Вирусы по микробиологии. Морфология вирусов, особенности классификации

Вирусные заболевания возникли в глубокой древности, однако вирусология как наука начала развиваться в конце XIX века.

В 1892 г. русский ученый-ботаник Д. И. Ивановский, изучая мозаичную болезнь листьев табака, установил, что заболевание это вызывается мельчайшими микроорганизмами, которые проходят через мелкопористые бактериальные фильтры. Эти микроорганизмы получили название фильтрующихся вирусов (от лат. virus - яд). В дальнейшем было показано, что имеются и другие микроорганизмы, проходящие через бактериальные фильтры, поэтому фильтрующиеся вирусы стали называть просто вирусами.

Большой вклад в изучение вирусов внесли советские вирусологи: М. А. Морозов, Н. Ф. Гамалея, Л. А. Зильбер, М. П. Чумаков, А. А. Смородинцев, В. М. Жданов и др.

Вирусы - это неклеточная форма существования живой материи. Они очень малы. По образному выражению В. М. Жданова "величину их по отношению к величине средних бактерий можно сравнить с величиной мыши по отношению к слону". Увидеть вирусы стало возможным только после изобретения электронного микроскопа.

В настоящее время для изучения вирусов используют много методов: химические, физические, молекулярно-биологические, иммунобиологические и генетические.

Все вирусы подразделяются на поражающие человека, животных, насекомых, бактерии и растения.

У вирусов наблюдается большое разнообразие форм и биологических свойств, однако все они имеют общие черты строения. Зрелые частицы вирусов называют вирионами.

В отличие от других микроорганизмов, содержащих одновременно ДНК и РНК, вирион содержит только одну из нуклеиновых кислот - либо ДНК, либо РНК.

Нуклеиновая кислота вирусов может быть однонитчатой и двунитчатой. Почти все вирусы, содержащие РНК, имеют в своем геноме однонитчатую РНК, а содержащие ДНК - двунитчатую ДНК. В соответствии с двумя типами генетического вещества вирусы подразделяют на РНК- и ДНК-содержащие. К ДНК-содержащим относятся 5 семейств, РНК-содержащим - 10 семейств.

* (Здесь приведены данные, касающиеся только некоторых из патогенных для человека вирусов. )

Структура вириона . В центре вириона находится нуклеиновая кислота, которая окружена капсидом (от греч. kanca - ящик). Капсид состоит из белковых субъединиц, называемых капсомерами. Зрелый вирус по химической структуре является нуклеокапсидом. Количество капсомер и способ их укладки (рис. 52) строго постоянны для каждого вида вируса. Например, вирус полиомиелита содержит 32 капсомера, а аденовирус - 252 капсомера. Капсомеры могут быть уложены в виде многогранника с равномерными симметричными гранями - кубоидальная форма (например, аденовирус). Укладка в виде спиралей (сферическая) характерна для вирусов гриппа. Может быть тип симметрии, при котором нуклеиновая кислота имеет вид пружины, вокруг которой уложены капсомеры, в этом случае вирус имеет палочковидную форму - вирус, вызывающий болезнь листьев табака.

Сложный тип симметрии имеет фаг: головка - кубоидальной, а отросток - палочковидной формы (сперматозоидная форма) (см. рис. 21, 22).

Таким образом, в зависимости от способа укладки вирусы подразделяют на кубоидальную, сферическую, палочковидную и сперматозоидную формы.

Некоторые вирусы, обладающие более сложной структурой, имеют оболочку, которая называется пеплос. Она образуется при выходе вируса из клетки хозяина. Вирусный капсид при этом обволакивается внутренней поверхностью цитоплазматической мембраны клетки хозяина и образуется один или несколько слоев оболочки суперкапсид. Такую оболочку имеют только некоторые вирусы, например вирусы бешенства, герпеса, энцефалита. Эта оболочка содержит фосфолипиды, разрушающиеся под воздействием эфира. Таким образом, воздействуя эфиром, можно отличить вирус, имеющий пеплос, от вируса с "голым капсидом".

У некоторых вирусов из внешнего липидного слоя оболочки выступают капсомеры в виде шипов (эти шипы тупые). Такие вирусы называются пепломерами (например, вирус гриппа, см. рис. 52).

Нуклеиновая кислота вируса является носителем наследственных свойств, а капсид и внешняя оболочка несут защитные функции, как бы оберегая нуклеиновую кислоту. Кроме того, они способствуют проникновению вируса в клетку.

Размеры вирусов . Измеряются вирусы в нанометрах. Величина их колеблется в широком диапазоне от 15-20 до 350-400 нм.

Методы измерения вирусов : 1) фильтрование через бактериальные фильтры с известной величиной пор; 2) ультрацентрифугирование - крупные вирусы осаждаются быстрее; 3) фотографирование вирусов в электронном микроскопе.

Химический состав вирусов . Количество и содержание ДНК и РНК вирусов неодинаковы. У ДНК молекулярная масса колеблется от 1·10 6 до 1,6·10 8 , а у РНК - от 2·10 6 до 9,0·10 6 .

Белки у вирионов обнаружены в незначительном числе, они состоят из 16-20 аминокислот. Кроме капсидных белков, имеются еще внутренние белки, связанные с нуклеиновой кислотой. Белки обусловливают антигенные свойства вирусов, а также в силу плотной укладки полипептидных цепей ограждают вирус от действия ферментов клетки хозяина.

Липиды и углеводы обнаружены во внешней оболочке сложных вирионов. Источником липидов и углеводов является оболочка клетки хозяина. Полисахариды, входящие в состав некоторых вирусов, обусловливают способность их вызывать агглютинацию эритроцитов.

Ферменты вирусов . Вирусы не имеют собственного метаболизма, поэтому они не нуждаются в ферментах обмена веществ. Однако у некоторых вирусов выявлено наличие ферментов, способствующих проникновению их в клетку хозяина. Например, у вируса гриппа А обнаружена нейраминидаза, отщепляющая нейраминовую кислоту, содержащуюся в оболочках животных клеток (эритроцитов и др.). У фагов - лизоцим, разрушающий клеточную оболочку, фосфатаза и др.

Выявление вирусных антигенов . Вирусные антигены в инфицированных клетках хозяина можно обнаружить с помощью метода иммунофлюоресценции. Препараты, содержащие клетки, инфицированные вирусами, обрабатывают специфическими иммунными люминесцирующими сыворотками. При просмотре в люминесцентном микроскопе в местах скопления вирусных частиц наблюдается характерное свечение. Вид вируса определяют по соответствию специфической люминесцирующей сыворотки, вызвавшей свечение.

Внедрение вируса в клетку, взаимодействие его с клеткой хозяина и репродукция (размножение) слагаются из ряда последовательных стадий.

Стадия 1. Начинается с процесса адсорбции за счет рецепторов вириона и клетки. У сложных вирионов рецепторы располагаются на поверхности оболочки в виде шиловидных выростов (вирус гриппа), у простых вирионов - на поверхности капсида.

Стадия 2. Проникновение вируса в клетку хозяина протекает по-разному у разных вирусов. Например, некоторые фаги протыкают оболочку своим отростком и впрыскивают нуклеиновую кислоту в клетку хозяина (см. главу 8). Другие вирусы попадают в клетку путем втягивания вирусной частицы с помощью вакуоли, т. е. на месте внедрения в оболочке клетки образуется углубление, затем края ее смыкаются и вирус оказывается в клетке. Такое втягивание называется виропексис.

Стадия 3. "Раздевание вируса" (дезинтеграция). Для своего воспроизведения вирусная нуклеиновая кислота освобождается от защищающих ее белковых покровов (оболочки и капсида). Процесс раздевания может начаться во время адсорбции, а может произойти тогда, когда вирус находится уже внутри клетки.

Стадия 4. На этой стадии происходит репликация (воспроизведение) нуклеиновых кислот и синтез вирусных белков. Эта стадия происходит при участии ДНК или РНК клетки хозяина.

Стадия 5. Сборка вириона. Этот процесс обеспечивается самосборкой белковых частиц вокруг вирусной нуклеиновой кислоты. Синтез белка может начаться непосредственно после синтеза вирусной нуклеиновой кислоты либо после интервала в несколько минут или несколько часов. У одних вирусов самосборка происходит в цитоплазме. У других в ядре клетки хозяина. Образование внешней оболочки (пеплоса) всегда происходит в цитоплазме.

Стадия 6. Выход вириона из клетки хозяина происходит путем просачивания вируса через оболочку клетки либо через отверстие, образовавшееся в клетке хозяина (в этом случае клетка хозяина погибает).

Типы взаимодействия вируса и клетки . Первый тип - продуктивная инфекция - характеризуется образованием новых вирионов в клетке хозяина.

Второй тип - абортивная инфекция заключается в том, что обрывается репликация нуклеиновой кислоты.

Третий тип - характеризуется встраиванием вирусной нуклеиновой кислоты в ДНК клетки хозяина; возникает форма сосуществования вируса и клетки хозяина (вирогения). В этом случае обеспечивается синхронность репликации вирусной и клеточной ДНК. У фагов это называется лизогения.

Микроскопическое исследование . При отдельных вирусных инфекциях в цитоплазме или ядрах клеток организма хозяина наблюдаются специфические внутриклеточные тельца - включения, имеющие диагностическое значение (тельца Бабеша - Негри при бешенстве, тельца Гварниери при оспе и др.). Размеры вирусных частиц и телец-включений удается искусственно увеличить специальными методами обработки препаратов с протравой и импрегнацией (например, метод серебрения по Морозову) и наблюдать при иммерсионной микроскопии. Более мелкие вирионы, лежащие за пределами видимости оптического микроскопа, обнаруживаются только при электронной микроскопии. Существуют разные точки зрения в отношении внутриклеточных включений. Одни авторы считают, что они представляют собой скопление вирусов. Другие считают, что они возникают в результате реакции клетки на внедрение вирусов.

Генетика вирусов . Модификация (ненаследуемые изменения) у вирусов обусловливается особенностями клетки хозяина, в которой происходит репродукция вируса. Модифицированные вирусы приобретают способность заражать клетки, аналогичные тем, в которых они модифицировались. У разных вирусов модификация по-разному проявляется. Например, у фагов изменяется форма "негативных пятен" (фаговых колоний).

Мутация - у вирусов возникает под влиянием тех же мутагенов, которые вызывают мутацию у бактерий (физические и химические факторы). Возникает мутация во время репликации нуклеиновых кислот. Мутации затрагивают различные свойства вирусов, например чувствительность к температуре и др.

Генетическая рекомбинация у вирусов может возникнуть в результате одновременного заражения клетки хозяина двумя вирусами, при этом может произойти обмен отдельными генами между двумя вирусами и образуются рекомбинанты, содержащие гены двух родителей.

Генетическая реактивация генов иногда происходит при скрещивании инактивированного вируса с полноценным, что приводит к спасению инактивированного вируса.

Спонтанная и направленная генетика вирусов имеет большое значение в развитии инфекционного процесса.

Устойчивость к факторам окружающей среды . Большинство вирусов инактивируется при действии высоких температур. Однако имеются исключения, например вирус гепатита термоустойчив.

К низким температурам вирусы не чувствительны, ультрафиолетовые солнечные лучи оказывают инактивирующее действие на вирусы. Рассеянный солнечный свет действует на них менее активно. Вирусы устойчивы к глицерину, что дает возможность длительно сохранять их в глицерине. Они устойчивы к антибиотикам (при культивировании вирусов исследуемый материал обрабатывают антибиотиками для подавления бактериальной флоры).

Кислоты, щелочи, дезинфицирующие вещества инактивируют вирусы. Однако некоторые вирусы, инактивированные формалином, сохраняют иммуногенные свойства, что позволяет использовать формалин для получения вакцин (вакцина против бешенства).

Восприимчивость животных . Круг восприимчивых животных для некоторых вирусов очень широк, например к вирусам бешенства чувствительны многие животные. Некоторые вирусы поражают только один вид животного, например вирус чумы собак поражает только собак. Имеются вирусы, к которым животные не чувствительны - например, вирус кори и т. д.

Органотропность вирусов . Вирусы обладают способностью поражать определенные органы, ткани и системы. Например, вирус бешенства поражает нервную систему. Вирус оспы обладает дермотропностью и т. д.

Выделение вирусов в окружающую среду . Из больного организма вирусы могут выделяться с калом, например вирус полиомиелита и другие энтеровирусы. Вирус бешенства выделяется со слюной, вирус гриппа - с отделяемым слизистой носоглотки и т. д.

Основные пути передачи вирусов . Воздушно-капельный (грипп, оспа), пищевой (полиомиелит, гепатит А), контактно-бытовой (бешенство), трансмиссивный (энцефалит).

Противовирусный иммунитет . Организм человека обладает врожденной устойчивостью к некоторым вирусам. Например, человек не чувствителен к вирусу чумы собак. Животные не чувствительны к вирусу кори. В этих случаях противовирусный иммунитет основан на отсутствии клеток, способных поддерживать репродукцию вирусов.

Противовирусный иммунитет обусловливается как клеточными, так и гуморальными факторами защиты, неспецифическими и специфическими. Неспецифические факторы. Мощным ингибитором репродукции вирусов является белковое вещество - интерферон. В здоровом организме он содержится в незначительном количестве, а вирусы способствуют продукции интерферона и количество его значительно увеличивается. Он неспецифичен, так как блокирует репродукцию разных вирусов. Однако он обладает тканевой специфичностью, т. е. клетки разных тканей образуют неодинаковый интерферон. Считают, что механизм действия его заключается в том, что он препятствует синтезу белка в клетке хозяина и этим прекращает репродукцию вируса.

К специфическим факторам противовирусного иммунитета относятся вируснейтрализующие антитела, гемагглютинирующие и преципитирующие.

Методы культивирования вирусов . Вирусы размножаются только в жизнеспособных клетках. Их культивируют: в куриных эмбрионах (рис. 53), культурах ткани человека и различных животных, в организме чувствительных животных, восприимчивых членистоногих.

В первый период развития вирусологии основным методом изучения вирусов являлось искусственное заражение животных, но этот метод сложный, и кроме этого животные ко многим вирусам оказались невосприимчивы.

Большое значение в развитии вирусологии имело введение методов культивирования вирусов в куриных эмбрионах и в культуре клеток тканей человека и животных.

Заражение куриных эмбрионов . Для репродукции вирусов используют куриные эмбрионы 7-12-дневного возраста, инкубированные в термостате при 37° С. Необходимым условием для правильного развития зародыша является соблюдение определенной влажности воздуха, которую можно создать, поместив в термостат сосуд с водой.

Пригодность куриного эмбриона для заражения определяется по наличию движений эмбриона и развитой сети кровеносных сосудов на хорион-аллантоисной оболочке при просвечивании с помощью овоскопа.

Культивирование вирусов в куриных эмбрионах проводится в разных местах эмбриона, который заражают (см. рис. 53):

1) на хорион-аллантоисную оболочку,

2) в аллантоисную полость;

3) в амниотическую полость;

4) в желточный мешок.

Заражение куриных эмбрионов проводят в боксе с использованием стерильных инструментов. Перед заражением куриные эмбрионы двукратно протирают ватным тампоном, смоченным спиртом.

Заражение на хорион-аллантоисную оболочку. После дезинфекции яйца осторожно срезают кусочек скорлупы с тупого конца, снимают подскорлупную оболочку - при этом обнаруживается хорион-аллантоисная оболочка. Инфекционный материал в количестве 0,1-0,2 мл при помощи шприца или пастеровской пипетки наносят на хорион-аллантоисную оболочку. После заражения отверстие закрывают колпачком и просвет между ним и куриным эмбрионом заливают парафином.

На другой стороне яйца простым карандашом пишут название инфекционного материала и дату заражения.

Заражение в амниотическую полость. Яйцо овоскопируют и на боковой стороне выбирают участок, где хорион-аллантоис лишен крупных кровеносных сосудов. Этот участок отмечают карандашом. Яйца укладывают на подставку в горизонтальном положении, дезинфицируют и специальным стерильным копьем прокалывают отверстие в скорлупе на глубину 213 мм, через которое вводят на это же расстояние иглу с инфекционным материалом непосредственно в амниотическую полость. Для того чтобы вводимая жидкость не вытекала обратно, предварительно делают прокол над воздушным мешком, после чего оба отверстия заливают парафином.

Заражение в аллантоисную полость. Заражение проводят в затемненном боксе. Отмечают воздушное пространство, скорлупу над воздушным пространством дезинфицируют и через отверстие в скорлупе вводят по направлению к эмбриону иглу шприца с материалом. Если игла попала в аллантоисную полость, то наблюдается смещение тени эмбриона. После заражения отверстие заливают парафином.

Заражение в желточный мешок. Скорлупу дезинфицируют. Яйцо помещают на подставку тупым концом вправо так, чтобы желточный мешок был обращен вверх. Над воздушной камерой в центре прокалывают отверстие. Через отверстие в скорлупе в горизонтальном направлении на глубину 2-3 мм вводят иглу шприца, которая попадает в желточный мешок. Материал вводят в объеме 0,2-0,3 мл. После введения материала отверстие парафинируют.

Температурный режим и длительность инкубации зависят от биологических свойств введенного вируса.

Инфицированные яйца ежедневно проверяют - овоскопируют для проверки жизнеспособности эмбриона. Если эмбрионы погибают в первые сутки, то причиной этого обычно бывает травма при заражении. Такие яйца выводят из опыта.

При необходимости раздельно исследовать каждую составную часть эмбриона материал собирают в определенном порядке: отсасывают аллантоисную жидкость, затем амниотическую жидкость, разрезают хорион-аллантоисную оболочку, отделяют амниотическую оболочку, эмбрион, желточный мешок и только после этого извлекают хорион-аллантоисную оболочку, отделив ее от внутренней поверхности скорлупы. Наличие вируса в зараженном эмбрионе определяют по характерным изменениям хорион-аллантоисной оболочки зараженного куриного эмбриона.

Вирусы, не обладающие гемагглютинирующей активностью, выявляют с помощью РСК.

Для выявления вируса в аллантоисной или амниотических жидкостях зараженных эмбрионов ставят РГА (гемагглютинация вызывается аллантоисной или амниотическими жидкостями или взвесью, приготовленной из хорион-аллантоисной оболочки).

Культивирование вирусов в культуре клеток . Для накопления вирусов в чувстсительных клеточных культурах используются ткани человека и различных животных. Наибольшее практическое применение получили однослойные культуры первично-трипсинизированных и перевиваемых линий клеток.

Однослойные культуры клеток выращивают в стеклянных плоских сосудах-матрацах. Клеточная суспензия в жидкой питательной среде при температуре 37° С позволяет получить "in vitro" слой клеток с определенной гистологической структурой. Присутствие вирусов в культурах тканей обнаруживают по изменению (дегенерации) клеток. Тип вирусов определяют путем нейтрализации действия вирусов при добавлении к вируссодержащему материалу соответствующих типоспецифических сывороток.

Эти методы позволяют быстрее учитывать результаты исследования и являются более экономичными. В тех случаях, когда вирусы не вызывают цитопатического действия (дегенерации) и не развиваются в куриных эмбрионах, пользуются методами заражения животных (см. главу 11).

Для культивирования вирусов используют перевиваемые клетки, которые чаще получают из клеток злокачественных опухолей.

Однослойные культуры получают из эмбрионов человека, курицы, животных.

Преимущество однослойных культур клеток - простота методики и легкость учета.

Способность клеток к размножению вне организма связана со степенью дифференциации ткани. Менее дифференцированные ткани обладают большей способностью к пролиферации (соединительная, эпителиальная ткань).

Сущность методов при приготовлении первичных культур ткани заключается в разрушении межклеточной ткани и разобщении клеток для последующего получения монослоя.

Разобщение клеток проводится путем воздействия на ткань протеолитических ферментов, чаще всего трипсина. Раствор трипсина способствует разъединению клеток при сохранении у них способности к размножению. Для выращивания культуры клеток необходима питательная среда. Состав среды сложный, он включает целый ряд ингредиентов: аминокислоты, глюкозу, витамины, минеральные соли, коферменты и т. д. Получение культуры ткани проводят в строго асептических условиях. В среду добавляются антибиотики (500 ЕД пенициллина и 250 ЕД стрептомицина в 1 мл) для подавления роста бактериальной флоры.

Подготовленную ткань заливают 0,25% раствором подогретого трипсина и инкубируют в термостате при 37° С. Во время инкубации ткань периодически помешивают путем вращения колбы. Трипсинизированные клетки центрифугируют при 800-1000 об/мин в течение 5 мин.

Трипсинизацию и центрифугирование проводят очень осторожно, чтобы не травмировать клетки. После центрифугирования надосадочную жидкость удаляют, а осадок клеток помещают в небольшой объем питательной среды. Для получения однородной массы взвесь клеток фильтруют через один слой марли в воронке (стерильной). Взвесь клеток проверяют на стерильность путем посева по 0,1 мл, в 2 пробирки с сахарным бульоном.

Успех культивирования клеток зависит от посевной Дозы, поэтому после трипсинизации производят подсчет клеток в камере Горяева. После подсчета взвесь клеток разводят питательной средой из такого расчета, чтобы в 1 мл содержалось 500000-1000000 клеток и разливают по пробиркам и матрацам. Пробирки с культурой ткани инкубируют в термостате в наклонном положении.

Посеянные культуры ежедневно просматривают под малым увеличением микроскопа для определения характера их роста. Нормальные пролиферирующие клетки светлые и растут однослойным пластом. Если клетки темные, зернистые и не пролиферируют, что может быть результатом загрязнения (плохая обработка посуды или загрязнение ингредиентов), то такие культуры изымают из опыта.

Смена питательной среды через 2-3 дня после посева улучшает интенсивность пролиферации.

Нормальные, хорошо пролиферирующие клетки заражают исследуемым материалом.

Перевиваемые культуры преимущественно получают из злокачественных опухолей. Штамм Hela - культура клеток рака шейки матки женщины по имени Helena (получен в 1950 г.); штамм Нер-2 выделен от больного раком гортани. Рост этих клеток поддерживается в лабораториях путем последовательных пассажей. Особенность их заключается в том, что они размножаются в течение длительного срока. В настоящее время эти клетки прошли уже тысячи генераций. В процессе пассажей они теряют некоторые морфологические и биохимические свойства - подвергаются мутации. Однако остаются вполне пригодными для культивирования в них вирусов. Культурой этих клеток пользуются лаборатории всего мира.

Размножение вируса в культуре клеток происходит в различные сроки в зависимости от свойств вируса и вида клеток.

О наличии вируса судят по цитопатическому действию. В микроскопе наблюдается дегенерация клеток. Время цитопатического действия и его характер зависят от дозы и свойств вируса.

У некоторых вирусов цитопатическое действие обнаруживается через несколько дней (вирус оспы), у других - через 1-2 нед (вирус гепатита и др.).

В настоящее время известны уже сотни вирусов, поражающих человека. Борьба с вирусными инфекциями осуществляется разными методами. Наиболее эффективна иммунизация. Таким способом ликвидирована оспа, сокращена заболеваемость полиомиелитом. Важное значение в борьбе с вирусными инфекциями имеют общественная профилактика - уничтожение бродячих собак (борьба с бешенством), личная профилактика и т. д.

Однако эти меры не могут обеспечить ликвидацию всех вирусных заболеваний. Ученые настойчиво ищут пути, при помощи которых можно было бы поразить вирус, не повредив клетку, в которой он находится.

Поэтому закономерно, что в программе КПСС вирусология названа одной из ведущих отраслей естественнонаучных знаний, которая должна получить преимущественное развитие в ближайшие годы.

Основные методы исследования вирусов . 1. Реакция гемагглютинации, реакция задержки гемагглютинации, реакция непрямой гемагглютинации. Реакция связывания комплемента.

2. Реакция нейтрализации вирусов в культуре тканей.

3. Метод иммунофлюоресценции.

4. Гистологический метод - выявление включений (телец Бабеша - Негри - при бешенстве; телец Пашена - при оспе и др.).

5. Биологический метод.

Подробности

В основу классификации вирусов положены следующие категории:
тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две), особенности воспроизводства вирусного генома;
размер и морфология вирионов , количество капсомеров и тип симметрии;
наличие суперкапсида ;
чувствительность к эфиру и дезоксихолату;
место размножения в клетке;
антигенные свойства и пр.

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают:

Они обычно гаплоидны, т.е. имеют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными .

Среди РНК- содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом . Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК) .

Имеются также РНК-содержащие вирусы с отрицательным (минус-нить РНК) геномом . Минус-нить РНК этих вирусов выполняет только наследственную функцию .

Морфологию вирусов изучают с помощью электронной микроскопии , так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различной:

а) палочковидной (вирус табачной мозаики),

б) пулевидной (вирус бешенства),

в) сферической (вирусы полио¬миелита, ВИЧ),

г) нитевидной (филовирусы),

д) в виде сперматозоида (многие бактериофаги).

Различают просто устроенные и сложно устроенные вирусы.
Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц - капсомеров . Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом , или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.

Тип симметрии. Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии . Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

.. 11 12 16 ..

5.2 Строение, размеры, формы, химический состав вирусов и фагов. Классификация вирусов

формы, химический состав вирусов и фагов. Классификация вирусов

Вирусная частица (вирион) состоит из спирально закрученной нуклеиновой кислоты – ДНК или РНК, покрытой снаружи белковой оболочкой (капсидом) . Капсидсостоит из отдельных субъединиц – капсомеров, которые идентичны друг другу.

При исследовании вирусов под электронным микроскопом обнаружены следующие формы вирусов:

палочковидная (вид прямого цилиндра). Такую форму имеет вирус табачной мозаики;

Нитевидная (изгибающиеся эластичные нити). Эту форму имеют вирусы некоторых растений;

Сферическая. Такую форму имеет вирус гриппа, герпеса;

Октаэндрическая (форма многогранника). Это вирус полиомиелита, вирус полиомы, аденовирусы;

Булавовидная (головастикообразная, сперматозоидная). Такую форму имеют вирусы бактерий – бактериофаги (рис. 5.1).

Рис. 5.1 - Строение бактериофага

Классификация вирусов

Вирусы относятся к царству Viro (ацитов).

Исходя из общепринятого представления о природе вирусов как живых существ, возникает необходимость их систематики. Однако до настоящего времени эта задача не решена, хотя предложено много различных принципов классификации вирусов: по форме; по химическому составу (РНК- и ДНК-вирусы), в зависимости от того, на какие клетки вирусы действуют (вирусы растений, вирусы животных, вирусы человека, вирусы микроорганизмов). Однако все эти признаки не являются стойкими и надежными критериями для разработки классификации вирусов по принципу бинарной номенклатуры.

Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

Изучение формы вирусов и их строения возможно только в электронном микроскопе при увеличении в 50 000—300 000 раз. Крупные вирусы размером более 150 нм можно увидеть в обычном световом микроскопе при специальных методах окраски и увеличении в 900— 1000 раз.

Форма вирусов может быть различной: шаровидной, овоидной, палочковидной, нитевидной, многогранной и булавовидной (рис. 14).

Зрелые частицы вируса называют вирионами. Вирион состоит из нуклеиновой кислоты, заключенной в белковую оболочку — капсид. Тип и свойства нуклеиновой кислоты имеют важное значение в классификации вирусов. Характерными признаками вирусов является содержание в вирионе только одной из нуклеиновых кислот: либо ДНК, либо РНК- Все остальные живые организмы содержат одновременно и ДНК, и РНК. В зависимости от типа нуклеиновой кислоты вирусы можно разделить на две большие группы: ДНК-содержащие и РНК-содержащие. Нуклеиновая кислота вирусов может состоять из одной нити (однонитчатая) или двух нитей (двунитчатая). Почти все РНК-содержащие вирусы имеют в своем геноме однонитчатую РНК. ДНК-содержащие вирусы чаще имеют двунитчатую ДНК и редко — однонитчатую.

У многих вирусов нуклеиновая кислота и белок (нуклеопротеид) находятся внутри вириона (сердцевина — core), а у некоторых вирусов нуклеиновая кислота непосредственно заключена в капсид (нуклеокапсид). Капсид состоит из повторяющихся белковых субъединиц, которые образованы одной или несколькими белковыми молекулами. Группы из нескольких белковых молекул можно видеть на электронных микрофотографиях. Такие структурные единицы, образующие часть капсида, называют капсомерами. Способ укладки капсомеров (тип симметрии) и количество их в капсиде неодинаковы у разных вирусов. Капсомеры могут быть уложены в капсидах в виде многогранника с равными симметричными гранями (кубический тип симметрии) или по спирали (спиральный тип симметрии). Спиральный тип симметрии имеют вирусы гриппа, а кубический — адено-, герпес- и энтеровирусы. Вирусы с кубическим типом симметрии называют также изометрическими. У вирусов группы оспы и бактериофагов сложный тип симметрии: например, головка бактериофага кубического типа, а отросток- хвост— спирального (рис. 15).

Многие вирусы животных и человека обладают внешней оболочкой (пеплос), окружающей их капсид. В состав этих оболочек входят липиды или липопротеиды. Наличие внешних оболочек характерно для вирусов, созревание которых происходит на внутренней поверхности цитоплазматической мембраны клетки хозяина. Проходя через поверхность пораженной клетки, вирусный капсид как бы обволакивается этой мембраной, формируя один или несколько слоев своей внешней оболочки. Внешнюю оболочку имеют миксо-, герпес- и рабдовирусы (вирус бешенства), а также тогавирусы (вирусы энцефалитов). Внешние оболочки этих вирусов, содержащие фосфолипиды, разрушаются эфиром, что служит отличительным признаком от вирусов, которые имеют голый капсид. Вирусы группы оспы также имеют внешние оболочки, но формирование их происходит внутри пораженной клетки и к эфиру они нечувствительны. У некоторых вирусов (миксо- и тогавирусы) из внешнего липидаого слоя выступают наружу вирусспецифические гликопротеиды. Эти выступающие капсомеры называют шипами (пепломеры), хотя концы их не острые, а тупые.

Мелкие вирусы, имеющие форму палочек или шариков, могут образовывать упорядоченные структуры в виде кристаллов. Кристаллы состоят из сотен миллиардов вирусных частиц, тесно прижатых друг к другу.

Вирусы оспы, бешенства, хламидии трахомы и некоторые другие, поражая различные клетки организма, образуют в них внутриклеточные включения. Это крупные и плотные гранулы, которые при определенной окраске могут быть обнаружены в световом микроскопе. Внутриклеточные включения располагаются в ядре клетки или ее цитоплазме. Происхождение их пока неясно.

В одних случаях они являются внутриклеточными колониями (скоплениями) элементарных частиц вируса (вирионов), в других — продуктами реакции клетки хозяина на внедрившийся вирус. Обнаружение внутриклеточных включений при некоторых инфекциях служит диагностическим признаком заболевания: например, тельца Негри при бешенстве, тельца Гварниери при оспе.